Graal: A Toolkit for Query Answering with Existential
Rules

Jean-Francois Baget, Michel Leclere, Marie-Laure Mugnier,
Swan Rocher, and Clément Sipieter

RuleML 2015

Inria — University of Montpellier
France

Abstract. This paper presents Graal, a java toolkit dedicated to ontological query
answering in the framework of existential rules. We consider knowledge bases
composed of data and an ontology expressed by existential rules. The main fea-
tures of Graal are the following: a basic layer that provides generic interfaces
to store and query various kinds of data, forward chaining and query rewriting
algorithms, structural analysis of decidability properties of a rule set, a textual
format and its parser, and import of OWL 2 files. We describe in more detail the
query rewriting algorithms, which rely on original techniques, and report some
experiments.

1 Introduction

Existential rules, a.k.a. Datalog+, are increasingly raising interest in the knowledge
representation and database communities [CGL09,BLMS11]. Indeed, they appear to
be well suited for representing ontologies, particularly in the Ontology-Based Data
Access framework (OBDA) [PLC*08], which seeks to exploit ontological knowledge
when querying data. On the one hand, existential rules extend (function-free) Horn
rules, a.k.a. Datalog rules, by allowing existentially quantified variables in rule heads.
This allows for asserting the existence of unknown entities, a fundamental feature for
reasoning on incomplete representations of data. On the other hand, they generalize
lightweight description logics used in the context of OBDA, like those underpinning
the tractable profiles of the Semantic Web ontological language OWL 2.

While the issue of querying data via existential rule ontologies has been well-studied
from a theoretical viewpoint, there is still a lack of software tools that would allow to
improve and demonstrate the practical usability of the framework. In this paper, we
present such a software, named Graal.! Graal comes in the form of a java toolkit ded-
icated to existential rules and oriented toward query answering tasks. The objective
of Graal is to provide algorithms and utility tools that can be used as basic blocks to
develop applications and carry out experimental evaluation of new solutions.

We consider knowledge bases composed of data and existential rules, as well as
conjunctive queries, all seen at a logical level. The main features of Graal are the fol-
lowing:

! Graal and related tools are available at www.github.com/graphik-team/graal

2 J.-F. Baget, M. Leclere, M.-L. Mugnier, S. Rocher, C. Sipieter

1. abasic layer that provides generic interfaces to store and query heterogeneous data
without considering the rules; these interfaces define mappings between the log-
ical level and data stored in various systems (currently: main memory, relational
databases, triple stores, graph databases);

2. ‘saturation’ algorithms, which apply rules on the data in a forward chaining man-
ner; the saturated data can then be queried using the basic layer;

3. ‘query rewriting’ algorithms, which reformulate a conjunctive query into a set (or
‘union’) of conjunctive queries; the rewritten query can then be evaluated over the
data using the basic layer. Furthermore, the set of rules can be partially compiled
independently from any query and the rewriting process exploits this compilation
to compute compact rewritings, which have a small size in practice;

4. utility tools: a format called dlgp (for ‘datalog+’) and its parser, decomposition of
rules, structural analysis of decidability properties of a rule set, and translation of
OWL 2 files into dlgp.

Graal integrates improved versions of the query rewriting algorithm PURE
[KLMT15] and the rule base analyser Kiabora [LMR13]. To the best of our knowl-
edge, the only other tool dedicated to ontological query answering with existential rules
is IRIST [GOP14], which builds on the query rewriting algorithm Nyaya.

The paper is organized as follows. Section 2 is devoted to fundamental notions on
existential rules and the associated ontological query answering problem. Sections 3
to 7 present the main features of Graal as enumerated above. Since our query rewrit-
ing algorithms rely on original techniques, we present them in more detail and report
experiments that demonstrate the interest of the compilation-based rewriting.

2 Fundamental Notions

We consider logical vocabularies without function symbols, hence a term is a variable
or a constant. An atom is of the form p(t1, . . .,) where p is a predicate of arity k, and
the ¢; are terms.

The ontological query-answering problem. A fact base is an existentially closed
conjunction of atoms. Note that variables may occur in the fact base. This allows to
encode in a natural way null values in databases or blank nodes in RDF, moreover
existential rules may produce new existential variables. A conjunctive query (CQ) is an
existentially quantified conjunction of atoms (and its free variables are called answer
variables). When it is a closed formula, it is called a Boolean CQ (BCQ). Hence, fact
bases and BCQs have the same logical form. It is convenient to see them as sets of
atoms. A union of CQs is a disjunction of CQs with the same answer variables.

Given existentially closed conjunctions A and B seen as sets of atoms, a homomor-
phism h from A to B is a substitution of the variables in A by terms in B such that
h(A) C B.Itis well-known that B is logically entailed by A (notation: A = B) if and
only if there is a homomorphism from B to A. Hence, homomorphism is a core notion
for reasoning. A fact base F is redundant if there is a homomorphism from F to one of
its strict subsets F’ (then F and F’ are equivalent).

Graal: A Toolkit for Query Answering with Existential Rules 3

Given a fact base F and a BCQ @), the answer to @) in F is positive if F = Q. If Q
is a non-Boolean CQ with answer variables (1 ...xz,), a tuple of constants (a1 ... aq)
is an answer to @) in F if there is a homomorphism from @ to F that maps z; to a;
for each 4. In other words, (a1 ...aq) is an answer to) in F if the answer to the BCQ
obtained from () by substituting each x; with a; is positive.

An existential rule (hereafter abbreviated to rule) R is a formula VaVy(Blx, y] —
Jz Hlx, z|) where B and H are conjunctions of atoms, respectively called the body
and the head of R (as for facts and BCQs, it is convenient to see the body and the
head of a rule as sets of atoms). The variables z which occur only in H are called
existential variables. The variables @, which occur in B and in H are called fron-
tier variables. Since there is no ambiguity, we may omit quantifiers in rules and sim-
ply denote a rule by B — H. For example, p(z,y) — q(z,2) A s(z) stands for
Vay(p(z,y) — Fz(glz, 2) A s(2)).

A fact is a rule with an empty body, hence it is an existentially closed conjunction
of atoms (and not only a ground atom). It follows that a conjunction of facts can be seen
as a single fact, which explains the above definition of a fact base.

A knowledge base (KB) K = (F,R) consists of a fact base F and a finite set of
(existential) rules R. The answer to a BCQ @ in K is positive if K |= @ (and the defi-
nition of the answer to a CQ in K follows). The (ontological) query answering problem
we consider takes as input a KB K = (F,R) and a CQ @, and asks for all answers to
@ in K. This problem has long been shown undecidable for general existential rules.
However, many decidable, and even tractable, classes have been exhibited.

There are two main approaches to query answering in the presence of rules. The
first approach is related to forward chaining (a.k.a. chase in databases): it triggers the
rules to build a finite representation of inferred data such that answers can be computed
by evaluating the query against this representation. The second approach, first proposed
for the description logic DL-Lite [CDL*07], is related to backward chaining: it rewrites
the query such that answers can be computed by evaluating the rewritten query against
the data. We now define fundamental notions related to these approaches.

Notions related to Forward Chaining. A rule R is applicable to a fact base F if there
is a homomorphism h from the body of R to F; the result of the application of R on F
w.rit. his F U h*¥*(head(R)) where h*% is a substitution of head(R), that replaces
each z in the frontier of R with h(x), and each other variable with a “fresh” variable.

Example 1. Let F = {p(a,b),r(b)} and R = p(x, y)Ar(y) — q(z, z) As(z). Note that
z is an existential variable. R is applicable to F with homomorphism {z — a,y — b}.
This application produces the fact 3z (g(a, 20) A s(z0)), where 2 is a fresh variable.
Hence, the resulting fact base is F; = {p(a, b), r(b), q(a, 20), s(20) }.

Given a BCQ @, it holds that & |= @ if and only if there is a fact base F’ obtained
from F by a finite sequence of rule applications such that 7' |= Q. The saturation F*
of F with R is obtained from F by repeatedly applying rules from R until no new rule
application can be performed. Note that 7* can be infinite. Given a BCQ @), it holds
that £ = Q if and only if 7* = Q. An answer to a CQ @ in K can thus be seen as an
answer to () in F*.

4 J.-F. Baget, M. Leclere, M.-L. Mugnier, S. Rocher, C. Sipieter

Notions related to Backward Chaining. Query rewriting relies on unification be-
tween the query and a rule head. Care must be taken when handling existential vari-
ables: if a term ¢ of the query is unified with an existential variable in a rule head, all
atoms in which ¢ occurs must also be part of the unification, otherwise the result is
unsound.

Example 2. Let Q = {q(u,v),r(v)}. Consider F and R from the previous example.
Note that) cannot be mapped by homomorphism to F; = F*, hence) has no answer
in (F,{R}). Assume we unify the atom ¢(u,v) from @ with the atom ¢(z, z) in the
head of R: then,) is rewritten into Q1 = {r(v),p(u,y),r(y)}, which is unsound.
Indeed, ()1 can be mapped to F by the homomorphism {u — a,y — b,v — b}.
Intuitively, the trouble is that the ‘connection’ between variables u and v has been lost

in Ql.

Hence, we unify a subset ()’ of the query with a subset H' of a rule head. To define
such a unifier, it is convenient to use a partition of the set of terms of QQ’UH’. A partition
7 of a set of terms is said to be admissible if no class of 7w contains two constants; then
a substitution o can be obtained from 7 by selecting an element e; in each class C; of
7, with priority given to constants, and setting o (t) = e; for all t € C;. A piece-unifier
of a BCQ Q witharule R = B — His atriple p = (Q', H',7,), where Q' C Q,
H' C H and 7, is an admissible partition on the terms of Q' U H’ such that:

1. o(H') = 0(Q’), where o is a substitution obtained from 7,;
2. ifaclass C; in 7, contains an existential variable (from H), then the other terms in
C; are variables from @’ that do not occur in (Q \ Q).

A piece P of () with respect to p is a non-empty inclusion-minimal subset of atoms
that have to be processed together, i.e., such that: for all a € P and o’ € Q, if a and
a’ share a variable unified with an existential variable of R by u, then a’ € P. One
can easily check that Q" is composed of pieces of Q with respect to u (hence the name
piece-unifier). The (direct) rewriting of) with R with respect to pis 0(Q\ Q') Uo(B)
where ¢ is a substitution obtained from .

Example 3. Consider again (), R and F. There is no piece-unifier of () with R since, z
being an existential variable, ¢(u,v) cannot be unified with ¢(z, z) without extending
the unifier to 7(v), which is not possible. Let Q2 = {q(u,v), g(w,v), r(u), t(w)}. A
piece-unifier of Q2 with R is ({q(u,v), ¢(w,v)}, {q(x, 2)}, {{u, w,x},{v, 2}}). The
corresponding rewriting is {r(u), t(u), p(u,y),r(y)}.

Given a BCQ Q, it holds that K = @ if and only if there is a BCQ Q’ obtained
from @ by a finite sequence of (direct) query rewriting steps such that 7 = @Q’. When
CQs (and not only BCQs) are involved, an answer variable cannot be unified with an
existential variable from a rule head. In practice, instead of making the piece-unifier
definition more complex, we simply transform a CQ () into a BCQ by adding an atom
with a special predicate ans that contains all answer variables, which ensures that an-
swer variables are correctly handled, and remove all atoms with predicate ans at the end
of the rewriting process.

Graal: A Toolkit for Query Answering with Existential Rules 5

3 Basic Query Answering

The kernel of Graal deals with the following problems: store a fact base and answer
conjunctive queries without considering the rules yet. Graal’s interface considers sets of
atoms (built from predicates of any non-null arity, and whose terms include variables).
Answering a query is thus seen as finding homomorphisms from a set of atoms to
another. However, Graal may rely upon different storage systems as well as different
querying algorithms to implement these basic problems.

Storage. A set of atoms can be stored either in main memory or in secondary memory
when it is very large. In main memory, the two implementations proposed are either a
list of atoms (smallest memory usage, smallest cost for adding atoms), or a graph-based
data structure (a better access to the data required for querying). In secondary memory,
the storage systems supported by Graal can be split into three families.

— Relational Databases Here, an atom p(t1, . . ., tx) is stored as a line (¢1,...,t) in
the table. Graal uses JDBC to implement relational database systems, which allows
to easily plug any RDBMS that provides a JDBC driver. Graal is currently provided
with a choice of MySQL, postgreSQL and SQL.ite.

— Triple Stores Here, a binary atom p(t1, t2) is stored as a triple (¢1p t3). Graal pro-
vides an implementation using Jena TDB and another using the SAIL API that
allows to use Sesame triple stores, as well as any storage that also implements that
API. Note that, to encode a set of arbitrary atoms into a triple store, it is first nec-
essary to binarize these atoms.

— Graph Databases Here, atoms, terms and predicates are represented by nodes in a
binary graph. An atom a = p(t1, ..., tx) is represented by k + 1 labeled edges: one
edge labeled predicate between the node representing a and the node represent-
ing p, and the others labeled term-i between the node representing a and the node
representing ¢;. Currently, Graal provides two implementations of this representa-
tion. The first one uses Neo4j, the second uses the Blueprints API through which it
is possible to plug in several graph database systems.

Querying. Graal comes with a generic backtrack algorithm that can compute homo-
morphisms regardless of the storage system used, thanks to Graal’s core API. Though
this algorithm does not come (yet) with any particular optimization, it allows for the
quick deployment of any new storage system. Alternatively, Graal provides translations
from a conjunctive query to the native querying languages of the storage mechanisms it
handles: SQL queries are used to access RDBMS; SPARQL queries are used to access
triple stores; and Cypher query language is used to query data encoded in Neo4j. Note
that all those translations, whatever the storage system used, ensure that the same set of
answers is obtained from a given CQ.

4 Saturation

Graal provides a forward chaining algorithm for existential rules, as well as several
optimizations of this algorithm. The algorithm performs breadth-first saturation. The

6 J.-F. Baget, M. Leclere, M.-L. Mugnier, S. Rocher, C. Sipieter

fact base is initialized with /' = Fq. Then, at each step, considering the fact base
Fi, we compute all homomorphisms from all rule bodies to F;. The fact base F;; is
obtained by applying the rules following these homomorphisms on ;. We illustrate the
saturation mechanism on the following running example.

Example 4 (Running Example). We start from a quaternary relation project(z, y, z, w),
which intuitively links a project identifier x, an area y, a scientific manager z and
an administrative manager w. Rule Ry decomposes this relation into binary relations
hasArea, hasScManager and hasAdmM anager. Rules Ry to Rg introduce special-
izations of the concept area, namely sensitiveArea, itself specialized into security
and innovation. Rules R, and Rs; state that relations hasScManager and
hasAdmM anager are specializations of hasManager. Rules Rg, and Rgy, state that
hasManager and isManagerOf are inverse relations. Rule R; states that ‘every
manager manages something’. Rules Rg, and Rg;, define the concept critical M anager
(“a critical manager is someone who manages something in a sensitive area, and recip-
rocally’). Finally, Rule Rg partially defines the concept of accredited M anager: ‘an
accredited manager is necessarily someone who manages a project in a security area’.
Ro=project(z,y, z,w)— hasArea(z, y) ANhasScManager(z, z) AhasAdm M anager (z, w)
R1 = sensitiveArea(z) — area(x)

R, = security(z) — sensitive Area(x)

R3 = innovation(x) — sensitiveArea(x)

R4 = hasScManager(x,y) — hasManager(z,y)

Rs = hasAdmM anager(z,y) — hasManager(z,y)

Rea = isManagerO f(y,z) — hasManager(z,y)

Rep, = hasManager(y, z) — isManagerO f(z,y)

R7 = manager(z) — isManagerO f(z,y)

Rsoa = isManagerO f(z,y) A hasArea(y, z) A sensitive Area(z) — critical M anager(z)
Rgy, = critical Manager(z) — isManagerO f(x,y) A hasArea(y, z) A sensitive Area(z)
Ry = accreditedM anager(z) — isManagerO f(z,y) A project(y, z,v, w) A security(z)

Example 5. Let F = {accredited M anager(claire), woman(claire)}. The satura-
tion at Step 1 produces the atoms isManagerO f(claire, yo), project(yo, 2o, vo, Wo),
security(zo) (by application of rule). The saturation at Step 2 produces the atom
hasManager(yo, claire) (by application of rule Rg,), the atom sensitive Area(zg)
(by application of rule Rs), and the atoms hasArea(yo, z0), hasScManager(yo, vo),
hasAdmM anager(yo, wo) (by application of rule Ry).

The optimizations implemented in Graal on the saturation mechanism are twofold.
The first one is related to the way we detect that a rule application added new informa-
tion. The default behavior of Graal is the restricted chase [FKMPOS]: inferred atoms
are not added at step ¢ + 1 if there is a folding from those atoms into F; (i.e., a homo-
morphism from the head of the rule into F; that preserves frontier variables according
to the homomorphism used to apply the rule).

Example 6. Let F = {manager(tom),isManagerO f(tom, project7)}. The appli-
cation of R; on F would produce the atom isManagerO f(tom,yo). Since it folds
into F, the restricted chase does not add this atom to F.

Graal: A Toolkit for Query Answering with Existential Rules 7

The second optimization is related to the selection of rules that have to be checked
to generate F,4 1. The default behavior is to check the applicability of all rules at each
step. We may also rely upon the graph of rule dependencies (GRD). The nodes of this
graph are the rules. There is an arc from a rule R to a rule R’ if there is a piece-unifier
of the body of R’ (hence, seen as a query) with (the head of) R. Optionally, such an arc
can be labeled with all piece-unifiers of the body of R’ with R. The essential properties
of the GRD are the following:

— R’ depends on R (i.e., an application of R may trigger a new application of R') iff
there is an arc from R to R';

— when the GRD contains no circuit (including self-loops), then the saturation halts
for any fact base.

The GRD can then be used as follows: without loss of completeness, the dependency
behavior checks for applicability at step 7+ 1 solely rules that depend on rules that were
successfully applied at step i; the unifier behavior improves the previous behavior by
considering the (piece-)unifiers between a rule R, and a rule Ry: if R; was applied at
step ¢ according to a homomorphism h, and p1, . . ., px are the unifiers of the body of
Rs with R1, then any homomorphism from the body of R at step 7+ 1 extends a partial
homomorphism g; o h that can be computed in linear time. This latter improvement not
only reduces the number of rules to be checked for applicability, but also the search
space for homomorphisms.

Finally, let us point out that by combining different storage methods and query-
ing algorithms (see Section 3), different rule decompositions (see Section 6), different
redundancy elimination mechanisms (restricted, core, etc...) and different rule trigger-
ing behaviors, we obtain different algorithms that can be more or less efficient for a
particular application. These choices not only impact the efficiency of the saturation
mechanism, but also the halting of that procedure. It is well known, for instance, that
the core chase (which removes all redundancies by computing the smallest equivalent
subset of atoms) halts for some instances where the restricted chase does not. Note also
that the choice of rule decomposition into atomic heads may lead to the non-termination
of the chase, as shown in Section 6.2 (Example 17).

5 Query Rewriting

In this section, we present the ‘piece-based’ rewriting technique. Two other rewriting
techniques applicable to existential rules are known. The first one skolemizes the rule
heads, i.e., replaces existential variables by Skolem functions (e.g., REQUIEM [Perez-
Urbina et al. 2009]). The second one decomposes the unification step into two steps:
factorisation of the query, and unification itself (e.g., PerfectRef [CDLT07] and IRIS*
[GOP14]). In both methods, some intermediate queries that will not yield rewritings are
generated. This is avoided in piece-based rewriting.

Basic Algorithm (PURE). Given a query () and a set of rules R, let Q be the set of
all rewritings that can be obtained by a sequence of direct rewritings from (). This set
is (pre-)ordered by subsumption ()1 subsumes () if any answer to () is an answer

8 J.-F. Baget, M. Leclere, M.-L. Mugnier, S. Rocher, C. Sipieter

to (1; this can be decided by a homomorphism test). When Q is finite, it can be seen
as a UCQ. However, it is sufficient to consider @' C Q, such that any element of Q
is covered (i.e., subsumed) by an element of Q' (we say that Q' is a cover of Q). All
inclusion-minimal covers of Q have the same cardinality.

The basic query rewriting algorithm in Graal (named PURE) takes as input a CQ
and a set of existential rules and outputs a minimal cover of the set of rewritings, if the
set of rewritings is finite (equivalently: if there exists a UCQ-rewriting of Q). Other-
wise, it may not terminate. Among the main classes of rules ensuring the existence of
a UCQ rewriting for any CQ, we can cite linear rules, which generalize most DL-Lite
dialects, the sticky family, and classes satisfying conditions expressed on a graph of rule
dependencies (see in particular [CGL09,CGP10,BLMS11]).

The algorithm PURE starts from the set of rewritings Qr = {Q} and proceeds in a
breadth-first manner. At each step, queries from Qp which have been generated at the
preceding step are explored; ‘exploring’ a query consists of computing the set of direct
rewritings of this query with all rules. Let O, be the obtained set of new queries. At the
end of the step, only a minimal cover of Qr U Q; is kept.

The computation of a minimal cover at each step may seem expensive, since each
comparison of two queries is a homomorphism check. The point is to ensure the termi-
nation of the algorithm whenever a finite set of rewritings exists: since a set of rewritings
may be infinite and still have a finite cover, a cover has to be maintained at each step
(or computed after a finite number of steps). For some classes of rules, such as linear
and sticky rules, this problem does not occur, and the minimal cover could be com-
puted only once at the end of the algorithm. For a detailed presentation of the rewriting
algorithm, we refer the reader to [KLMT15].

It is well known that the bottleneck of UCQ-rewriting is the size of the produced
UCQ, which can be prohibitively large in practice. Graal proposes an optimized rewrit-
ing technique, presented next.

Compilation-based algorithm (PURE). We can observe that some simple rules are an
obvious cause of combinatorial explosion. A typical example is that of rules describing
hierarchies of concepts (seen as unary predicates), as in the following example.

Example 7. Let Ry ... R, be rules of the form R; : b;(xz) — b;—1(z). These rules
express that the concept by is specialized into concept by, itself specialized into b, etc.
Let Q@ = {bo(z1) ... bo(zk)}. Each atom by (z,) in @ is rewritten into b (x;), which in
turn is rewritten into bz (z;), and so on. Thus, there are (n + 1)* rewritings of Q.

Now, assume that we compile the rules from the previous example into an order on
predicates b, < b,_1 < ... < by and embed this order in the homomorphism notion
such that a predicate b; can be mapped to any predicate b; such that j < 4. Then, the
only rewriting of () needed to compute the answers to () over any fact base is @ itself.
We generalize this idea by compiling all rules with an atomic body as long as they do
not introduce existential variables. Since the atoms in a rule may have predicates of
different arity and arguments in different positions, we compute a relation on atoms and
not only predicates. Moreover, this relation is not necessarily an order, but a preorder
(i.e., a reflexive, transitive, but not necessarily antisymmetric relation).

Graal: A Toolkit for Query Answering with Existential Rules 9

A rule is said to be compilable if it has a single body atom, no existential variable
and no constant. W.l.o.g. we also assume that a compilable rule has a single head (in-
deed, if the rule has no existential variable, each atom in the head forms a piece). Let

*

R be the set of compilable rules. We compute the closure of R, denoted by R, which
is the set of all rules inferred from R.2, as illustrated next on the running example.

Example 8 (Running example). The compilable rules are Ry (decomposed into 3 rules),
Ri ... Rs, Rgq, Rep. The inferred rules are the following:

project(z,y, z,w) — hasManager(zx, z)

project(x,y, z,w) — hasManager(z,w)

security(z) — area(z)

innovation(x) — area(x)

hasScManager(x,y) — isManagerO f(y, x)

hasAdmManager(z,y) — isManagerO f(y, z)

project(z,y, z,w) = isManagerO f(z, x)

project(x,y, z,w) — isManagerO f(w, x)

The preorder < on atoms associated with R} is as follows: given two atoms A and
B, wehave A < Bif (i) A = B or (ii) there is arule R € R}, with a homomorphism
h from body(R) to A such that h(head(R)) = B.

Example 9 (Running example). It holds that security(u) < area(u) by the inferred
rule security(x) — area(x); and that project(u, b, a,a) < isManagerO f(a,u) by
the rule project(z,y,z,w) — isManagerOf(w,z) and the homomorphism
h={z—uy—bz— a,w— a}.

Homomorphism is the fundamental notion to compute logical entailment on sets of
atoms. We extend it to embed the preorder: Given sets of atoms A and B,
a <-homomorphism from B to 4 is a substitution h from vars(B) to terms(.A) such
that for all B € B, there is A € A with A < h(B). This allows to answer CQs over a
KB composed of a fact base and a set of compilable rules.

Example 10 (Running example). Let Q(x) = {hasManager(y,x), hasArea(y, z),
sensitiveArea(z)}, asking for managers of projects about sensitive areas. Let F =
{project(idy, a1, my, ms), security(a;)}. The answers to () are m4 and msy. For mq,
we have the <-homomorphism hy = {z — my,y — id;,z — a1}, with
project(idy, a1, mi,me) < hasManager(id;,my), project(idy,a;,my,ms) <
hasArea(idy,ay) and security(ay) < sensitiveArea(ay); and similarly for mo.

Now, let R = R. U R, be a set of existential rules, where R. is composed of
compilable rules. R, is compiled into a preorder < and query rewriting is performed
with R.. The preorder has to be embedded into the rewriting process, otherwise the
rewriting process would not be complete, as shown in the next example.

% Let Ry and R» be compilable rules such that head(R1) and body(R>) are unifiable by a (classi-
cal) most general unifier u. The rule inferred from (R, R2) is u(body(R1)) — u(head(Rz)).

10 J.-F. Baget, M. Leclere, M.-L. Mugnier, S. Rocher, C. Sipieter

Example 11 (Running example). Consider again the query @ from the preceding exam-
ple. There is no rewriting of () with the non-compilable rules, whereas clearly, using the
compilable Rules Rg,, Ro and Ry, @ could be rewritten into {isManagerO f(z,y),
project(y, z, zo, wo), security(z)}, which would then allow to obtain the rewriting
{accreditedM anager(z)} with Rule Rg.

Hence, the preorder is embedded into the piece-unifier operation as well. Given a
preorder < on atoms, a <-piece-unifier of Q) with Ris a triple u = (Q’, H', m,,) defined
similarly to a piece-unifier, with Condition 1 (c(H') = o(Q")) being replaced by: there
is a surjective mapping f from o(H') to o(Q’) such that, for all A € o(H'), we have
f(A) =< A. The direct x-rewriting of @) according to y is u(body(R)) U u(Q \ Q).

Example 12 (Running example). Let Q = {critical M anager(z), woman(z)}. The
basic query rewriting algorithm outputs a set of 38 CQs (these CQs are pairwise incom-
parable w.r.t. logical entailment, hence we cannot do better if the output is a classical
UCQ). The direct <-rewriting outputs only the 3 following queries: Q1(x) = Q(x),
Q2(x) = {isManagerO f(z,z1), hasArea(z1, x2), sensitiveArea(xz), woman(z)}
and Qs(z) = {accreditedManager(z), woman(zx)}. Q2 is a direct rewriting of @
with Rule Rg, and Q3 is a direct <-rewriting of 5 with Rule Rg.

The following theorem states that the process is sound and complete: given a KB
K =(F,R), where R = R. UR,. and R, is a set of compilable rules with associated
preorder <, and a BCQ @, it holds that K = @ iff there is) obtained by a sequence
of direct <-rewritings from @ using rules from R, such that 7, R |= Q' (i.e., there is
a <-homomorphism from Q’ to F). For more details, the reader is referred to [KLM15].

Graal’s optimized rewriting algorithm (PURE() is composed of two steps: (1) it
partitions the given rule set R into R. and R., computes R and encodes it into a pre-
order <; (2) given @, R. and <, it outputs a minimal cover of the set of <-rewritings
(with the notion of cover being defined with respect to <-homomorphism instead of
homomorphism). Since Step 1 is independent from any query, it can be perfomed inde-
pendently from Step 2. Hence, the algorithm also accepts as input R., R and Q.

Query evaluation Let Q be the result of the optimized rewriting algorithm: Q can be
seen as a ‘pivotal’ representation, in the sense that it can be transformed into different
kinds of queries, depending on the type of data storage and the applicative context. Ob-
viously, it can be directly evaluated with an adequate implementation
of <-homomorphism in the case the data can be loaded in main memory.>

Otherwise, the set Q U R, can be straightforwardly translated into a Datalog query,
as illustrated in the next example, and passed to a Datalog engine.

Example 13 (Running example). From Q = {Q1(x), Q2(x), Q3(x)} (see the preced-
ing example), we build 3 Datalog rules with head ans(x) (where ans is the answer
predicate). E.g., from @ (z), we obtain ans (x) : -criticallanager (x) ,woman(x). The
Datalog query is composed of these 3 rules and compilable rules from R..

3 The <-homomorphism is not available yet as a standalone querying operation in the current
version of Graal.

Graal: A Toolkit for Query Answering with Existential Rules 11

A mixed approach can be adopted with R, being used to saturate the data, and Q
being evaluated over the ‘semi-saturated’ data. One may even assume that all infor-
mation that could be inferred by compilable rules is already present in the data, and
delegate the encoding of this information to the database manager. In particular, if R,
is composed solely of hierarchical rules and the data are stored in a RDBMS, semantic
index techniques allow to effectively avoid the computation of saturation [RC12].

When partial saturation of the data is not feasible, Q may also be unfolded into a
set of CQs (i.e., a UCQ) Q’: Q' is obtained from Q by adding, for each Q € Q, all Q’
such that Q" < @ (then computing a cover). We have experimentally checked that it is
more efficient to unfold Q than to directly compute Q.

Example 14 (Running example). Queries (1 and ()3 are invariant by unfolding; Q)5 is
unfolded into 6 x 2 x 3 = 36 queries. All queries are incomparable, hence |Q’| = 38.

Experiments We synthetize here experimental results that demonstrate the interest of
compilation-based rewriting. Due to space requirements, we cannot provide the de-
tailed results. Since benchmarks dedicated to existential rules are not available yet, we
considered rule bases obtained by translation from description logics (DLs). We first
carried out experiments about the query rewriting step itself. For these experiments, we
considered a widely used benchmark, introduced in [PHMO09], composed of DL-Liter
ontologies, namely ADOLENA, STOCKEXCHANGE, UNIVERSITY and VICODI.
Additionally, we considered very large DL-Liteg ontologies proposed in [TSCS13],
which respectively contain more than 53k and 34k rules, with 54% and 64% of com-
pilable rules. Each ontology is provided with 5 handcrafted queries. We first evaluated
the impact of rule compilation on the rewriting process, w.r.t. the rewriting size and
runtime respectively. We found a huge gap between the sizes of the output; the pivotal
UCQ is often restricted to a single CQ even when the classical UCQ has thousands of
CQs (up to more than 30000 CQs in a case where the pivotal UCQ contains 1 CQ).
Unsurprisingly, the results on the query rewriting runtimes lead to similar observations.
We found that PURE¢ (without or with unfolding) scales well on the large ontologies.
We also compared to other query rewriting tools, namely Nyaya (which was the only
other tool processing existential rules, before the recent release of IRIS+), as well as
some well-known DL tools. We emphasize that these DL tools exploit the particularities
of DL-Lite, specially the most recent ones, namely tw-rewriting [RMKZ13] (part of the
Ontop OBDA system) and Rapid [CTS11], whereas Graal and Nyaya are designed for
general existential rules. Globally, PURE¢ behaves similarly to the fastest tools, Rapid
and tw-rewriting. If we restrict the comparaison to classical UCQ output, the fastest
tools are undeniably tw-rewriting and Rapid, followed by PURE with unfolding.

We carried out additional experiments to compare the evaluation of the classical
UCQ rewriting on data with the evaluation of the pivotal UCQ on data semi-saturated
by compilable rules. For these experiments, we used the DL benchmark LUBM3,, pro-
posed in [LSTW13], which comes with a data generator. This benchmark is a modi-
fication of the well-known benchmark LUBM introduced in [GPHO5] (and provided
with 14 queries). In particular, it yields more rules with existential variables and adds
6 challenging queries. We consider two fact bases (stored in an RBDMS) of 151 MB
(10 universities) and 3266 MB (200 universities). In both cases, the ratio between the

12 J.-F. Baget, M. Leclere, M.-L. Mugnier, S. Rocher, C. Sipieter

initial base and the semi-saturated base is rather small (approx. 1.22). Note that the
semi-saturation step is independent from any query, hence it can be computed only
once as a preprocessing step (for information, it took 41 seconds and 15 minutes re-
spectively). We rewrote the 20 queries associated with LUBM and LUBM3,. Results
about the rewriting step itself confirmed the conclusions of the first experiments. Table
1 reports the evaluation runtime for each query (‘UCQ’: evaluation of the classical UCQ
on the initial database; ‘Pivotal’: evaluation of the pivotal query on the semi-saturated
database; ‘Rew TO’ and ‘Ans TO’: 30 minutes timeout in the rewriting step and in the
evaluation step resp.; ‘SQL Err.’: query too large for the RDBMS). We can see that the
pivotal UCQ is evaluated much more efficiently than the classical UCQ (which could
even not be produced or passed to the RDBMS in several cases). Note that, despite the
pivotal rewriting of ¢35 is a single CQ, it could not be evaluated, even on the smaller
fact base, because it requires a large number of joins.

#univ.| Rew. [ql | g2 | g3 q4 q5 q6 q7 q8 q9 | ql10
10 UCQ [0.62|1.09/ 0.62 | 091 | 0.64 13.99 0.74 435 |3.40(0.78

Pivotal |0.56(0.56| 0.55 | 0.56 | 0.55 5.88 0.58 0.57 |1.62|0.65

200 UCQ [0.63|1.74| 0.66 | 1.00 | 0.64 | 229.23 | 0.76 4.68 |23.37]0.75

Pivotal |0.58]0.82| 0.56 | 0.58 | 0.57 85.00 0.58 0.58 |6.56 | 0.66

#univ.| Rew. [qll|ql2| q13 | ql4 qls ql6 ql7 ql8 | ql9 | q20

UCQ [0.65(0.86]0.648| 11.27 |Rew TO|SQL Err.|SQL Err.|Rew TO| 3.31 | 4.62

Pivotal|0.66/0.69| 0.66 | 11.29 | 1.02 0.66 0.69 |Ans TO|0.56 | 1.36

UCQ |0.60(0.82| 0.68 [173.51|Rew TO|SQL Err.|SQL Err.|Rew TO| 3.30 |17.58

Pivotal|0.67]0.66| 0.65 [168.45| 4.71 0.95 0.68 |Ans TO|0.58 | 5.58
Table 1. Evaluation time over LUBM%'0 (in seconds)

200

6 Utility Tools for Existential Rules

In this section, we present utility tools dedicated to existential rules, which allow to
exchange, decompose and analyze rule bases.

Datalog+ Format and OWL 2 translator We defined a textual format, called digp
(for Datalog+), which extends standard datalog notation. Example 15 shows part of the
running example in dlgp format.

In addition to ‘pure’ existential rules, dlgp allows to encode negative constraints
(existential rules with an empty head, interpreted as always false), equality atoms any-
where in the rule bodies and heads (which allows for instance to encode functional
dependencies), as well as conjunctive queries and facts. Note that the tools currently
implemented in Graal do not process negative constraints and rules with equality in a
specific way. For compatiblity with semantic web languages, the use of URIs instead of
standard predicates or term names is allowed.

Graal is provided with a dlgp parser and writer. It comes also with a translator of
OWL 2, built on the OWL API. This tool processes OWL 2 axioms that can be translated
into existential rules and ignores the others.

Graal: A Toolkit for Query Answering with Existential Rules 13

Example 15 (Rules Rg, and Rgy in dlgp format).
[R8a]criticalManager (X) : -isManager0f (X,Y) ,hasArea(Y,Z) ,sensitiveArea(Z).
[R8b]isManager0f (X,Y) ,hasArea(Y,Z) ,sensitiveArea(Z) :-criticalManager (X).

Decomposition tools As already explained, existential variables in rule heads ‘glue’
atoms into subsets (‘pieces’) that have to be processed as a whole. Formally, a piece P
in a rule head H is a non-empty and inclusion-minimal subset of H such that: for all
A € Pand A’ in H, if A and A’ share an existential variable, then A’ € P. A rule
head is said to be single-piece (resp. atomic) if it is composed of a single-piece (resp. a
single atom).

A piece of arule R can be seen as a ‘unit’ of knowledge brought by an application of
R. Indeed, R can be decomposed into an equivalent set of single-piece-head rules with
the same body; furthermore, a rule with a single-piece-head cannot be decomposed into
an equivalent set of atomic-head rules, except by adding a new predicate.

Example 16 (Running example). Rule Ry has no existential variable, thus each atom
forms a piece. It can be decomposed into: { Ry 1=project(z,y, z, w) = hasArea(z,y),
Ry o = project(z,y,z,w) — hasScManager(x, z), Ry 3 = project(z,y,z,w) —
hasAdmManager(x,w)}.

By adding a special predicate, one can always decompose an existential rule into
atomic-head rules. Hence, without loss of expressivity one could restrict attention to
such rules. However, breaking the rule pieces has several drawbacks. First, it leads to a
less accurate analysis of dependencies between rules. Second, it leads to less efficient
query rewriting (we refer the reader to the experiments reported in [KLMT15]). Finally,
it can even make the forward chaining infinite because it prevents from detecting some
redundancies in the saturated facts as shows Example 17.

Example 17. Consider the rule R = p(z) — r(x,y) A r(y,y) A p(y) and its decom-
position into atomic-head rules: { Ry = p(z) — pr(x,y), R2 = pr(x,y) = r(z,y),
Ry = pr(z,y) = r(y,y). Ra = pr(z,y) = p(y) }. Let F = {p(a)}. The re-
stricted chase with R halts on this instance. The first application of R generates F; =
{p(a),r(a,y0), (Yo, Y0), P(yo) }. The next application generates F» = {p(a), r(a, yo),

7(Y0,y0)s P(¥o), (Yo, y1), T(y1,91), p(y1)} that folds into F; (with both yo and y;
being mapped to yq).

Graal provides these two transformations of rules for convenience, however only
the decomposition into single-piece heads is exploited in reasoning algorithms, since
the other one is always less efficient.

Analysis of a rule set Graal also provides a rule base analyser, which was first devel-
oped as Kiabora, available online.* We briefly explain why such an analysis may be
useful. Since ontological query answering is undecidable for general existential rules,
neither forward nor backward chaining mechanisms may halt. Therefore, some ‘ab-
stract’ properties of rule sets have been defined, in relation with the kind of algorithm
that halts on rule sets satisfying these properties. These properties are the following:

* http://wuw.lirmm.fr/kiabora

14 J.-F. Baget, M. Leclere, M.-L. Mugnier, S. Rocher, C. Sipieter

— FES. A rule set is a finite expansion set when, for any fact base F, F* is equivalent
to a finite fact base (hence, a forward chaining algorithm able to detect equivalent
fact bases halts).

— FUS. A rule set is a finite unification set when, for any CQ @, the set of all rewrit-
ings that can be obtained by a sequence of direct rewritings from () has a finite
cover (hence, a breadth-first query rewriting algorithm that maintains a minimal
cover halts).

— BTS. A rule set is a bounded treewidth set when, for any fact base F, F* has
bounded treewidth, even if it may be infinite (see [TBMR12] for an algorithm).

BTS ™

weakly fg
frontier-
guarded

e N\
.

FUS

weakly-
guarded

atomic body
(linear)

domain-
restricted

Fig. 1. Decidable classes processed by the analyser

These abstract properties are not recognizable. However, many concrete classes of
rules have been exhibited, whose syntactic properties ensure the satisfaction of one
or several of the abstract properties. Figure 1 pictures the concrete classes currently
recognized by the rule analyser; for an overview of these classes, see, e.g., [Mugl1].

Furthermore, the analyser uses the graph of rule dependencies as a tool to improve
decidability recognition. Indeed, some global properties on this graph allows one to
combine FES, FUS or BTS behaviors to obtain a halting procedure. For instance, if no
rule from a subset processed as FES depends on a rule from a subset processed as FUS,
one can first saturate the fact base with the FES rules, rewrite the query with the FUS
rules, and finally query the partially saturated fact base with the obtained rewritings. For
more details on the decidability recognition module, the reader is referred to [LMR13].

7 Conclusion

We presented the main features of Graal, a java toolkit devoted to existential rules and
oriented toward ontological query answering. Graal is a modular tool, with minimal
dependencies between modules, which allows to embed part of it in another sofware.

Graal: A Toolkit for Query Answering with Existential Rules 15

It is designed to be easily customized or extended. Its core is a set of java interfaces
that can be implemented to plug in other storage sytems, input /output formats, or new
algorithms. Future work includes processing negative constraints and equality in rules,
providing other exchange formats, such as the Datalog+ fragment of RuleML, and im-
plementing other query answering algorithms as well as approaches allowing to com-
bine them, as initiated in Kiabora rule analyser.

References

BLMSI11. J.-F. Baget, M. Leclere, M.-L. Mugnier, and E. Salvat. On Rules with Existential
Variables: Walking the Decidability Line. Artif. Intell., 175(9-10):1620-1654, 2011.

CDL"07. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable
Reasoning and Efficient Query Answering in Description Logics: The DL-Lite Fam-
ily. J. Autom. Reasoning, 39(3):385-429, 2007.

CGL09. A. Cali, G. Gottlob, and T. Lukasiewicz. A General Datalog-Based Framework for
Tractable Query Answering over Ontologies. In PODS 2009, pages 77-86, 2009.

CGP10. A. Cali, G. Gottlob, and A. Pieris. Query Answering under Non-guarded Rules in
Datalog+/-. In RR 2010, pages 1-17, 2010.

CTS11. A. Chortaras, D. Trivela, and G. B. Stamou. Optimized Query Rewriting for OWL 2
QL. In CADE’11, pages 192-206, 2011.

FKMPOS5. R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data exchange: semantics and
query answering. Theor. Comput. Sci., 336(1):89-124, 2005.

GOP14. G. Gottlob, G. Orsi, and A. Pieris. Query Rewriting and Optimization for Ontological
Databases. ACM Trans. Database Syst., 39(3):25, 2014.

GPHOS5. Y. Guo, Z. Pan, and J. Heflin. LUBM: A Benchmark for OWL Knowledge Base
Systems. J. Web Sem., 3(2-3):158-182, 2005.

KLM15. M. Konig, M. Leclere, and M.-L. Mugnier. Query Rewriting for Existential Rules
with Compiled Preorder. In IJCAI 2015, 2015.

KLMT15. M. Konig, M. Leclere, M.-L. Mugnier, and M. Thomazo. Sound, Complete and Min-
imal UCQ-Rewriting for Existential Rules. Sem. Web J., to appear, 2015.

LMRI13. M. Leclere, M.-L. Mugnier, and S. Rocher. Kiabora: An Analyzer of Existential Rule
Bases. In RR 2013, pages 241-246, 2013.

LSTW13. C. Lutz, L. Seylan, D. Toman, and F. Wolter. The Combined Approach to OBDA:
Taming Role Hierarchies Using Filters. In ISWC 2013, pages 314-330, 2013.

Mugll. M.-L. Mugnier. Ontological query answering with existential rules. In RR 2011,
pages 2-23, 2011.

PHMO09. H. Pérez-Urbina, I. Horrocks, and B. Motik. Efficient query answering for OWL 2.
In ISWC 2009, pages 489-504, 2009.

PLCT08. A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati.
Linking Data to Ontologies. J. Data Semantics, 10:133-173, 2008.

RC12. M. Rodriguez-Muro and D. Calvanese. High Performance Query Answering over
DL-Lite Ontologies. In KR 2012, 2012.

RMKZ13. M. Rodriguez-Muro, R. Kontchakov, and M. Zakharyaschev. Query Rewriting and
Optimisation with Database Dependencies in Ontop. In DL’13, pages 917-929, 2013.

TBMR12. M. Thomazo, J.-F. Baget, M.-L. Mugnier, and S. Rudolph. A Generic Querying Al-
gorithm for Greedy Sets of Existential Rules. In KR 2012, 2012.

TSCS13. D. Trivela, G. Stoilos, A. Chortaras, and G. B. Stamou. Optimising Resolution-Based

Rewriting Algorithms for DL Ontologies. In DL’13, pages 464-476, 2013.

