
Brief Overview of the Existential Rule Framework

GraphIK Team, LIRMM-Inria, Montpellier

July 2012

Existential rules allow to assert the existence of not-yet-known individ-
uals. The existential rule framework is also known as an extension to Dat-
alog, called Datalog+/-. It is particularly relevant to ontology-based query
answering. In this framework, a knowledge base is composed of facts —or
data— and of ontological knowledge expressed by existential rules (including
rules with equality atoms) and negative constraints. The considered queries
are conjunctive queries; extending them to a union of conjunctive queries
is straightforward. In this document, we briefly present the main compo-
nents of the existential rule framework. Examples are given under the form
of logical sentences as well as in the dedicated dlgp (for “Datalog Plus”)
format.

A term is a variable or a constant. An atom is of the form p(e1 . . . ek)
where p is a predicate, k ≥ 1 is the arity of p, and each ei is a term. An
equality atom is of the form ei = ej , where ei and ej are terms.

Example 1 In the examples below, we consider the following predicates,
with their arity mentioned after their name: area/1, project/1, researcher/1,
isproject/3, hasExpertise/2, isMember/2. Intuitively, the unary predicates
can be seen as types of entities (classes, concepts); the ternary predicate
isProject is supposed to relate a project, the area of this project and the
leader of this project; binary predicates hasExpertise and isMember relate a
researcher to an area and a project, respectively.

A knowledge base is composed of facts, existential rules and negative
constraints. For each of these constructs, we consider below their simplified
logical form (quantifiers and parentheses are omitted, which can be done
because there is no ambiguity), their full logical form and their dlgp form.

A fact F is given as a conjunction of atoms (simplified form) logically
interpreted as its existential closure ∃X̄F [X], where X̄ is the set of variables
occurring in F .

Example 2 (Fact)
“Researcher a is member of a project in kr area”

1

• simplified logical form:
F = researcher(a) ∧ isMember(a,X) ∧ isProject(X, kr, Y)

• full logical form:
F = ∃X∃Y (researcher(a) ∧ isMember(a,X) ∧ isProject(X, kr, Y))

• dlgp form:
researcher(a), isMember(a,X), isProject(X, kr, Y).

% unamed fact

[F] researcher(a), isMember(a,X), isProject(X, kr, Y).

% named fact

An existential rule is a positive rule of the form B → H (simplified
form), where B and H are conjunctions of atoms; it is interpreted as the
formula ∀X̄(∃Ȳ B[X̄, Ȳ] → ∃Z̄H[X̄, Z̄]), or equivalently ∀X̄∀Ȳ (B[X̄, Ȳ] →
∃Z̄H[X̄, Z̄]), where X̄ are the variables shared by B and H, Ȳ are the vari-
ables that occur only in B and Z̄ are the variables that occur only in H; Z̄
variables are existentially quantified.

Example 3 (Existential Rule)
“Every leader of a project is a member of this project”
“Every researcher expert in an area is member of a project in this area”

• simplified logical form:
isProject(X,Y, Z)→ isMember(Z,X)
researcher(X)∧hasExpertise(X,Y)→ isProject(Z, Y, L)∧isMember(X,Z)

• full logical form:
∀X∀Y (isProject(X,Y, Z)→ isMember(Z,X))
∀X∀Y (researcher(X)∧hasExpertise(X,Y)→ ∃Z∃L(isProject(Z, Y, L)∧
isMember(X,Z)))

• dlgp form:
ismember(Z,X) :- isProject(X,Y,Z).

% plain Datalog rule

isProject(Z,Y,L), isMember(X,Z) :- researcher(X), hasExpertise(X,Y).

% extended Datalog rule: non-atomic head and

% existential variables in the head

Rules may also contain equalities. The dlgp format allows for any form
of equality anywhere in a rule. However, equalities are often restricted as
follows: a distinction is made between standard existential rules that do not
contain equalities at all and equality rules of the form B → e1 = e2, where
B does not contain equalities and e1, e2 are variables occurring in B, or
constants.

2

Example 4 (Equality Rule)
“Every project has at most one leader”

• simplified logical form:
isProject(X,Y, Z1) ∧ isProject(X,Y, Z2)→ Z1 = Z2

• dlgp form:
Z1=Z2:- isProject(X,Y,Z1), isProject(X,Y,Z2).

A negative constraint C is a conjunction of atoms (simplified form)
interpreted as the negation of its existential closure ¬(∃X̄C[X̄]); equivalently
it is a rule of the form C → ⊥, where ⊥ denotes the absurd symbol (which
is always false).

Example 5 (Negative Constraint)
“Classes researcher and project are disjoint”

• simplified logical form:
¬(researcher(X) ∧ project(X)) or
researcher(X) ∧ project(X)→ ⊥

• full logical form:
¬∃X(researcher(X) ∧ project(X)) or
∀X(researcher(X) ∧ project(X))→ ⊥)

• dlgp form:
! :- researcher(X), project(X).

% ! is the ‘‘always false’’ symbol

A fundamental problem consists in querying a knowledge base. We con-
sider here basic queries, so-called conjunctive queries. Conjunctive queries
can be encoded in the dlgp format, which allows to associate typical or
frequent queries with a knowledge base.

A conjunctive query Q is a conjunction of atoms with a distinguished
subset of its variables (the answer part of the query); it is interpreted
as the logical formula obtained from Q by existentially quantifying non-
distinguished variables. When the set of distinguished variables is empty, Q
is a Boolean query (and has the same logical translation as a fact).

Example 6 (Conjunctive Query)
Q1 :“Find the members of projects in kr area”
Q2 :“Is there a project in kr area ?”

• simplified logical form: same as a fact, added with a way of distin-
guishing some variables

3

• full logical form:
Q1 = ∃Y (isMember(X,Y) ∧ isProject(Y, kr, Z))
Q2 = ∃X∃ZisProject(X, kr, Z)

• dlgp form:
? (X) :- isMember(X,Y), isProject(Y, kr, Z).

? :- isProject(X,kr,Z).

% Boolean query

4

