
From OWL 2 to DLGP: the ER Profile
Technical Report

Jean-François Baget, Alain Gutierrez, Michel Leclère, Marie-Laure Mugnier,
Swan Rocher, and Clément Sipieter

July 2015

Inria, CNRS and University of Montpellier
France

1 Introduction

We introduce here the ER (for Existential Rule) profile of OWL 2, for which all axioms
can be translated into dlgp1 statements. We point out that all axioms that can be written
in existing profiles of OWL 2 (namely EL, QL and RL) are axioms of ER.

For the sake of simplicity, we do not discuss here datatypes nor literals. Axioms used
for datatypes and literals always correspond to a similar axiom used for classes and indi-
viduals (for instance DataIntersectionOf corresponds to
ObjectIntersectionOf). They are thus processed similarly in our translation.

2 Preliminary Notions

Basic objects in an OWL 2 ontology are entities, such as classes, properties and indi-
viduals. These entities are identified by IRIs. We associate an OWL 2 individual i with
the logical constant i, an OWL 2 class C with the unary predicate C, and an OWL 2
property p with the binary predicate p.2

Entities are used to build expressions, such as class expressions or property ex-
pressions. We present these expressions both in OWL 2 functional notation, such as
ObjetIntersectionOf(A, ObjectComplementOf(B)), and in their DL no-
tation such as A u ¬B; they both identify the class whose elements are in A and
not in B. For every class expression C, we can build a FOL formula ΦC(x) whose
only free variable is x, expressing that “x is an element of the class C”. For instance,
ΦAu¬B(x) = A(x)∧¬B(x). In the same way, for every property expression p, we can

1 https://graphik-team.github.io/graal/dl/datalog+_v2.0_en.pdf
2 We already discuss here the particular case of two specific classes, Thing and Nothing

(respectively written > and ⊥ in DL). Thing is the universal class that contains everything
and Nothing is the empty class. They are used as any other class in our framework, though
their particular semantics is expressed in dlgp by the two following dlgp statements that must
be present in every dlgp knowledge base translating an OWL 2 ontology: the dlgp constraint
! :- Nothing(X); and the dlgp annotation @top Thing that declares that the universal
class in the knowledge base is named Thing.

build a FOL formula ΦP (x, y) whose only free variables are x and y, expressing that
“the relation p holds between the subject x and the object y”.

An OWL 2 ontology is a set of axioms, built from expressions (we do not discuss
here annotations, which have no logical translation). The axiom SubclassOf(A,
B) means that all elements of A are also elements of B. It is written A v B in DL no-
tation. This axiom is translated into a FOL formula (without free variable) ∀x (A(x)→
B(x)). Almost all OWL 2 axioms can be translated into formulas of the form ∀~x(B(~x)→
H(~x)) where B(~x) and H(~x) are FOL formulas whose only free variable is x. These
formulas cannot always be translated into dlgp, as shown in Example 1.

Example 1. The axiom C v A u ¬B is translated by the formula ∀x (C(x)→ A(x) ∧
¬B(x). It is equivalent to the conjunction of the two formulas ∀x (C(x) → A(x))
and ∀x (C(x) → ¬B(x)). The first is expressed by the dlgp rule A(X) :- C(X)
and the second by the dlgp constraint ! :- B(X), C(X). In contrast, the axiom
A u ¬B v C cannot be translated into dlgp.

The ER (for existential rules) profile of OWL 2 is obtained by putting syntactic re-
strictions on OWL 2 expressions and axioms, in order to ensure that all axioms have an
equivalent translation in dlgp. This profile defines different kinds of class expressions,
according to the position they can fill in a formula of the form ∀~x(B(~x) → H(~x)).
EquivClass expressions can appear in both sides of such an implication, as will be dis-
cussed in Sect. 3. SubClass expressions can only appear in the left side (Sect. 4), while
SuperClass expressions can only appear in the right side (Sect. 5). We show in Sect. 6
that any OWL 2 axiom can either be easily translated into dlgp or is equivalent to a
formula of the form ∀~x(B(~x) → H(~x)), that can be translated when it complies with
the restrictions of the ER profile.

In this paper, all axioms and expression constructors will be presented according to
the format given in Tab. 1.

Type of axiom or expression
Name of axiom or expression
Axiom or expression in OWL 2 functional syntax DL syntax Logical translation
Optional comments.

Table 1. General format of tables

3 EquivClass expressions

A FOL formula F(~x) is said to be conjunctive when it is in the form ∃~z (C1[~x, ~z] ∧
. . . ∧ Cp[~x, ~z]) where the Ci[~x, ~z] are (positive) atoms whose variables are in ~x ∪ ~z.3

3 Moreover, we always simplify such a conjunctive formula: it is equivalent to Nothing(x) if
one of its atoms is some Nothing(y), and we can remove all atoms of the form Thing(y)
without changing the semantics (unless the formula is restricted to a single atom Thing(x)).

Object Property Expressions
Object Property
p p p(x, y)
Inverse Object Property
ObjectInverseOf(p) p− p(y, x)

Property Expression Chain
ObjectPropertyChain(p1, . . . , pk) p1 · . . . · pk ∃z1 . . . ∃zk−1(Φp1 (x, z1) ∧ . . . ∧ Φpk

(zk−1, y))

Note that the arguments of a property expression chain are always object property expressions.

Table 2. Property expressions in OWL 2.

Property 1. For every property expression p, Φp(x, y) is a conjunctive formula. See
Tab. 2.

Proof. All OWL 2 property expression constructors are listed in Tab. 2. The property is
immediate.

In the ER profile, an EquivClass expression is a class expression built, without any
other restriction, from the constructors listed in Tab. 3.

EquivClass expressions
Class
C C C(x)
Intersection of Class Expressions
ObjectIntersectionOf(C1, . . . , Ck) C1 u . . . u Ck ΦC1

(x) ∧ . . . ∧ ΦCk
(x)

Existential Quantification
ObjectSomeValuesFrom(p, C) ∃p · C ∃y (Φp(x, y) ∧ ΦC(y))
Individual Value Restriction
ObjectHasValue(p, i) ∃p · {i} Φp(x, i)
Self-Restriction
ObjectHasSelf(p) ∃p · Self Φp(x, x)
Minimum Cardinality - Restricted to n = 0 or 1
ObjectMinCardinality(0, p, C) ≥ 0pC Thing(x)
ObjectMinCardinality(1, p, C) ≥ 1pC ∃y (Φp(x, y) ∧ ΦC(y))
Enumeration of Individuals - Restricted to n = 1
ObjectOneOf(i) {i} x = i

Table 3. EquivClass expressions constructors

Property 2. For every EquivClass expression C, ΦC(x) is equivalent to a conjunctive
formula.

Proof. Consider the formula ΦC(x) built from the constructors in Tab. 2 and 3. By
putting it into prenex form, then simplifying it, we obtain a conjunctive formula.

The following property is the basis of our transformation from OWL 2 to dlgp.

Property 3. Every formula of the form ∀~x(B(~x) → H(~x)) where B(~x) and H(~x) are
conjunctive can be translated into an equivalent dlgp rule.

Proof. LetB(~x) = ∃~y (b1[~x, ~y]∧. . .∧bk[~x, ~y]) andH(~x) = ∃~z (h1[~x, ~z]∧. . .∧hq[~x, ~z]).
Up to a variable renaming, we can consider that ~y ∩ ~z = ∅. Then ∀~x (B(~x)→ H(~x)) is
equivalent to the existential rule ∀~x∀~y((b1[~x, ~y]∧ . . .∧ bk[~x, ~y])→ ∃~z(h1[~x, ~z]∧ . . .∧
hq[~x, ~z])), which can thus be translated into the dlgp rule h1[~X, ~Z], . . . , hq[~X, ~Z] :-

b1[~X, ~Y], . . . , bk[~X, ~Y]

Example 2. The class expression ∃p·(∃q ·C) is translated into FOL by Φ∃p·(∃q·C)(x) =
∃y1(p(x, y1) ∧ (∃y2(q(y1, y2) ∧ C(y2)))). By putting it in prenex form, we obtain the
conjunctive formula ∃y1∃y2(p(x, y1)∧q(y1, y2)∧C(y2)). Thus the axiomD v ∃p·(∃q·
C) is translated by the dlgp rule: p(X, Y1), q(Y1, Y2), C(Y2) :- D(X).

As a final remark on the translation of implications of conjunctive formulas, we
point out that formulas of the form ∀x(B(x) → Thing(x)) or ∀x(Nothing(x) →
H(x)) do not bring any information, thus do not need to be translated; that formulas of
the form ∀x(B(x) → Nothing(x)) can be directly translated into a dlgp constraint;
and that formulas of the form ∀x(x = a→ B(x)) can be directly translated into a dlgp
fact.

Example 3. The axiom A v ∃p · ⊥ is translated by the FOL formula ∀x(A(x) →
(∃y(p(x, y)∧Nothing(y)))), which can be simplified in ∀x(A(x)→ Nothing(x)),
and thus can be expressed by the dlgp constraint ! :- A(X)

The axiom {a} v ∃p · C is translated by the FOL formula ∀x ((x = a) →
∃y(p(x, y) ∧ C(y)) and thus can be expressed by the dlgp fact: p(a, Y), C(Y).

4 SubClass expressions

A FOL formula F(~x) is said to be disjunctive when it is a disjunction F1(~x) ∨ . . . ∨
Fk(~x) of conjunctive formulas. In that case, we say that the disjunction is of size k.4

In the ER profile, a SubClass expression is a class expression built, without any
other restriction, from the constructors listed in Tab. 4.

EquivClass expressions
All EquivClass expressions constructors: Atomic class expressions (including Thing and Nothing),
ObjectIntersectionOf, ObjectSomeValuesFrom, ObjectHasValue, ObjectHasSelf,
ObjectMinCardinality (restricted to n = 0 or 1), ObjectOneOf (restricted to n = 1).

SubClass expressions
Union of class expressions
ObjectUnionOf(C1, . . . , Ck) C1 t . . . t Ck ΦC1

(x) ∨ . . . ∨ ΦCk
(x)

Enumeration of individuals (unrestricted)
ObjectOneOf(i1, . . . , ik) {i1, . . . , ik} x = i1 ∨ . . . ∨ x = ik

Table 4. SubClass expressions constructors.

4 We always simplify a disjunctive formula: it is equivalent to Thing(x) if one of its conjunctive
formulas is Thing(x), and we can remove all conjunctive formulas of the form Nothing(x)
without changing the semantics (unless the formula is restricted to a single conjunctive formula
Nothing(x)).

Property 4. IfC is a SubClass expression, ΦC(x) is equivalent to a disjunctive formula.

Proof. Consider the formula ΦC(x) built from the constructors in Tab. 2 and 4. By
putting it into prenex form, we obtain a formula whose atoms are connected only by
disjunctions and conjunctions. By a sequence of transformations using distributivity,
we obtain a disjunctive formula, that we can finally simplify.

Example 4. The SubClass expression (AtB)u ∃p · (AtB) is translated by the FOL
formula (A(x)∨B(x))∧∃y(p(x, y)∧(A(y)∨B(y))). It is equivalent to the disjunctive
formulaFAA(x)∨FAB(x)∨FBA(x)∨FBB(x) whereFAA(x) = ∃y(A(x)∧p(x, y)∧
A(y)), FAB(x) = ∃y(A(x)∧ p(x, y)∧B(y)), FBA(x) = ∃y(B(x)∧ p(x, y)∧A(y))
and FBB(x) = ∃y(B(x) ∧ p(x, y) ∧B(y)).

Note that putting the formula translating a SubClass expression into its disjunctive
form can be exponential in the size of the initial formula.

Property 5. Every formula of the form ∀~x(B(~x)→ H(~x)), where B(~x) is a disjunctive
formula of size k andH(~x) is a conjunctive formula, can be translated into an equivalent
conjunction of k dlgp rules.

Proof. See that a formula of form ∀~x((B1(~x) ∨ . . . ∨ (Bk(~x)) → H(~x)) is equivalent
to the conjunction of the k formulas, for 1 ≤ i ≤ k, ∀~x(Bi(~x) → H(~x)), where Bi(~x)
andH(~x) are conjunctive formulas. It remains to conclude with property 3.

Example 5. The axiom (AtB)u∃p·(AtB) v ∃q·> is translated by the four following
dlgp rules: q(X, Z) :- A(X), p(X, Y), A(Y) and q(X, Z) :- A(X),
p(X, Y), B(Y) and q(X, Z):- B(X), p(X, Y), A(Y) and q(X, Z) :-
B(X), p(X, Y), B(Y).

5 SuperClass expressions

Contrary to what happens with EquivClass and SubClass expressions, all OWL 2 con-
structors can appear in ER SuperClass expressions. Hence, these expressions can also
use, in addition to the constructors already presented, the constructors listed in Tab. 5.
However, we impose syntactic restrictions on the possible interactions between these
constructors.

Definition 1. SuperClass expressions are defined inductively. A SuperClass expression
is either an EquivClass expression; the intersection C1 u . . . u Ck of SuperClass ex-
pressions Ci; the complement ¬C of a SubClass expression C; the universal restriction
∀p·C of a SuperClass expressionC; or the maximum cardinality≤ n pC of a SubClass
expression C, when n is restricted to 0 or 1.

Property 6. A formula ∀x (ΦB(x) → ΦH(x)), where B is a SubClass expression and
H is a SuperClass expression, is equivalent to a conjunction of formulas of the form
∀x (B(x)→ H(x)), where B(x) is disjunctive andH(x) is conjunctive.

Complement of Class Expressions
ObjectComplementOf(C) ¬C ¬ΦC(x)
Is a SuperClass expression when C is a SubClass expression
Universal Quantification
ObjectAllValuesFrom(p, C) ∀p · C ∀y (Φp(x, y)→ ΦC(y)
Is a SuperClass expression when C is a SuperClass expression
Maximum Cardinality
ObjectMaxCardinality(n, p, C) ≤ npC ∀y1 . . . ∀yn+1((Φp(x, y1)∧ΦC(y1)∧ . . .∧Φp(x, yn+1)∧

ΦC(yn+1))→ ∨1≤i<j≤n+1yi = yj))
Only used when n is restricted to 0 or 1, is a SuperClass expression when C is a SubClass expression.
Exact Cardinality
ObjectExactCardinality(n, p, C) = npC Macro for ObjectMinCardinality and

ObjectMaxCardinality.

Table 5. List of all other (non datatype) OWL 2 constructors.

Proof. We show that property inductively on the SuperClass expression H .
If H is an EquivClass expression, then the property is immediate.
IfH = H1u . . .uHk, then our formula is equivalent to the conjunction of formulas

∀x (ΦB(x)→ ΦHi
(x)), where the Hi are SuperClass expressions.

If H = ¬H ′, then our formula is equivalent to ∀x (ΦB(x) ∧ ΦH′(x)→
Nothing(x)). Since both B and H ′ are SubClass expressions, the conjunction of
ΦB(x) and ΦH′(x) is equivalent to a disjunctive formula.

If H = ∀p · H ′, then our formula is equivalent to ∀y (∃x (ΦB(x) ∧ Φp(x, y)) →
ΦH′(y)). Since ΦB(x) is disjunctive, its conjunction with ∃y p(x, y) can also be put in
disjunctive form, and ΦH′(y) is a SuperClass expression.

If H =≤ 0 pH ′, then our formula is equivalent to ∀x (∃y (ΦB(x) ∧ Φp(x, y) ∧
ΦH′(y))→ Nothing(x)). Since bothB andH ′ are SubClass expressions, the formula
∃y (ΦB(x) ∧ Φp(x, y) ∧ ΦH′(y)) is equivalent to a disjunctive formula.

IfH =≤ 1 pH ′, then our formula is equivalent to ∀x (∃y1∃y2 (ΦB(x)∧Φp(x, y1)∧
ΦH′(y1) ∧ Φp(x, y2) ∧ ΦH′(y2)) → y1 = y2). Since both B and H ′ are SubClass
expressions, the formula ∃y1∃y2 (ΦB(x)∧Φp(x, y1)∧ΦH′(y1)∧Φp(x, y2)∧ΦH′(y2))
is equivalent to a disjunctive formula.

Example 6. Let {a} t ∃p ·A v (∃q ·B)u (¬C)u (∀r ·D) be an axiom. Its associated
formula is ∀x ((x = a∨∃y1(p(x, y1)∧A(y1)))→ (∃y2(q(x, y2)∧B(y2))∧¬C(x)∧
∀y3(r(x, y3)→ D(y3)))). It is equivalent to the conjunction of the three formulasF1 =
∀x ((x = a ∨ ∃y1(p(x, y1) ∧ A(y1)))→ ∃y2(q(x, y2) ∧ B(y2))), F2 = ∀x ((x = a ∨
∃y1(p(x, y1)∧A(y1)))→ ¬C(x)) and F3 = ∀x ((x = a∨∃y1(p(x, y1)∧A(y1)))→
∀y3(r(x, y3)→ D(y3))).

The formula F1 is translated into the two dlgp statements q(a, Y2), B(Y2).
and q(X, Y2), B(Y2) :- p(X, Y1), A(Y1).

The formula F2 is equivalent to ∀x ((C(x) ∧ (x = a ∨ ∃y1(p(x, y1) ∧A(y1))))→
Nothing(x)). By putting the left side of the implication in disjunctive form, we ob-
tain ∀x (((C(x) ∧ x = a) ∨ ∃y1(p(x, y1) ∧ A(y1) ∧ C(x))) → Nothing(x)), that
can be translated in the two dlgp constraints ! :- C(a). and ! :- p(X, Y1),
A(Y1), C(X).

Finally, the formula F3 is equivalent to ∀y3 ((∃x (r(x, y3) ∧ x = a)) ∨ (∃x∃y1
(p(x, y1) ∧ A(y1) ∧ r(x, y3))) → D(y3)) and can thus be translated into the two dlgp
rules D(Y3) :- r(a, Y3). and D(Y3):-p(X, Y1), A(Y1), r(X, Y3).

6 Axioms

We have seen that we can translate into dlgp any formula of the form ∀~x(B(~x) →
H(~x)), when B(~x) is a disjunctive formula, andH(~x) a conjunctive formula.

In Tab. 6, we show that, since the formula associated with a property expression is
conjunctive, all OWL 2 axioms that do not require class expressions can be put in such
a form. Hence, the following property:

Property 7. OWL 2 axioms with no class expression can be translated into dlgp.

On the other hand, an OWL 2 axiom that requires class expressions may not be
translatable in dlgp. This is why we impose restrictions on all these axioms in the
OWL 2 ER profile: EquivalentClasses is restricted to EquivClass expressions;
DisjointClasses and HasKey are restricted to SubClass expressions;
ObjectPropertyDomain, ObjectPropertyRange, and ClassAssertion
are restricted to SuperClass expressions; the first argument of SubClassOf must be a
SubClass expression and its second argument must be a SuperClass expression. Finally,
DisjointUnion does not belong to the ER profile.

Assuming these restrictions as displayed in Tab. 7, we conclude with the following
property:

Property 8. All OWL 2 axioms in the ER profile can be translated into dlgp.

7 OWL 2 profiles

Finally, we point out that the profiles of OWL 2 (namely EL, QL and RL) are fragments
of OWL2 ER.

Property 9. All OWL 2 axioms that are either EL, QL or RL axioms are also ER ax-
ioms.

We prove that property for each of these profiles.

7.1 OWL 2: the EL profile

Class expressions in OWL 2 EL only use the following constructors:
ObjectSomeValuesFrom, ObjectHasValue, ObjectHasSelf,
ObjectOneOf (restricted to a single individual), ObjectIntersectionOf. These
constructors form a subset of those listed in Tab. 3, and thus all class expressions in EL
are ER EquivClass.

It follows that all axioms (apart from DisjointUnion) that can be expressed
in EL are ER axioms. Since DisjointUnion is excluded from the EL profile, we
conclude that any EL axiom is an ER axiom.

Object Property Axioms
Object Subproperties
SubObjectPropertyOf(p, q) p v q ∀x∀y (Φp(x, y)→ Φq(x, y))
Equivalent Object Properties
EquivalentObjectProperties(p, q) p ≡ q ∀x∀y (Φp(x, y)↔ Φq(x, y))
Equivalent to the conjunction of ∀x∀y (Φp(x, y)→ Φq(x, y)) and ∀x∀y (Φq(x, y)→ Φp(x, y))
Disjoint Object Properties
DisjointObjectProperties(p, q) p v ¬q ∀x∀y((Φp(x, y)∧Φq(x, y))→ Nothing(x)
Inverse Object Properties
InverseObjectProperties(p, q) p ≡ q− ∀x∀y (Φp(x, y)↔ Φq(y, x))
Equivalent to the conjunction of ∀x∀y (Φp(x, y)→ Φq(y, x)) and ∀x∀y (Φq(x, y)→ Φp(y, x))
Functional Object Properties
FunctionalObjectProperty(p) ∀x∀y∀z (Φp(x, y) ∧ Φp(x, z)→ y = z)
Equivalent to ∀y∀z (∃x(Φp(x, y) ∧ Φp(x, z))→ y = z)
Inverse-Functional Object Properties
InverseFunctionalObjectProperty(p) ∀x∀y∀z (Φp(y, x) ∧ Φp(z, x)→ y = z)
Equivalent to ∀y∀z (∃x(Φp(y, x) ∧ Φp(z, x))→ y = z)
Reflexive Object Properties
ReflexiveObjectProperty(p) ∀x (Thing(x)→ Φp(x, x))
Irreflexive Object Properties
IrreflexiveObjectProperty(p) ∀x (Φp(x, x)→ Nothing(x))
Symmetric Object Properties
SymmetricObjectProperty(p) ∀x∀y (Φp(x, y)→ Φp(y, x))
Asymmetric Object Properties
AsymmetricObjectProperty(p) ∀x∀y((Φp(x, y)∧Φp(y, x)→ Nothing(x))
Transitive Object Properties
TransitiveObjectProperty(p) ∀x∀y∀z (Φp(x, y) ∧ Φp(y, z)→ Φp(x, z))

Assertions
Individual Equality
SameIndividual(i1, i2) i1 = i2 i1 = i2
Translated by the dlgp fact i1 = i2
Individual Inequality
DifferentIndividuals(i1, i2) i1 6= i2 ¬i1 = i2
Translated by the dlgp constraint ! :- i1 = i2
Positive Object Property Assertions
ObjectPropertyAssertion(i1, p, i2) p(i1, i2) Φp(i1, i2)
Translated by the dlgp fact obtained by replacing x by i1 and y by i2 in Φp(x, y)
Negative Object Property Assertions
NegativeObjectPropertyAssertion(i1, p, i2) ¬p(i1, i2) ¬Φp(i1, i2)
Translated by the dlgp constraint ! :- Φp(i1, i2) as described above.

Table 6. OWL 2 axioms that do not require class expressions

7.2 OWL 2: the QL profile

SubClass expressions in OWL 2 QL can only be built from an (atomic) class, or from
the constructor ObjectSomeValuesFrom, with the added restriction that its second
argument is necessarily the class Thing. Every QL SubClass expression is thys an ER
EquivClass expression (whose associated formula is restricted to a single atom).

SuperClass expressions in QL are built from conjunctions
(ObjectIntersectionOf) of class expressions that can be either an (atomic) class;
the negation (ObjectComplementOf) of a SubClassExpression; or obtained from
the constructor ObjectSomeValuesFrom, with the added restriction that the second
argument is an atomic class expression. It follows that every QL Superclass expression
is an ER SuperClass expression.

Class Axioms
Subclass axioms
SubClassOf(C1, C2) C1 v C2 ∀x (ΦC1

(x)→ ΦC2
(x))

C1 must be a Subclass expression and C2 must be a SuperClass expression
Equivalent Classes
EquivalentClasses(C1, C2) C1 ≡ C2 ∀x (ΦC1

(x)↔ ΦC2
(x))

Translated by the conjunction of ∀x (ΦC1
(x)→ ΦC2

(x)) and ∀x (ΦC2
(x)→ ΦC1

(x)).
Both C1 and C2 must be EquivClass expressions.
Disjoint Classes
DisjointClasses(C1, C2) C1 v C2 ∀x ((ΦC1

(x) ∧ ΦC2
(x))→ Nothing(x)

Both C1 and C2 must be SubClass expressions.
Disjoint Union of Class Expressions
DisjointUnion(C,C1, . . . , Ck) ∀x (ΦC(x)↔ (∨1≤i≤kΦCi

(x)))
∧1≤i<j≤k¬(∃x (ΦCi

(x) ∧ ΦCj
(x)))

Cannot be translated into dlgp, even when restricted to (atomic) classes.

Object Property Axioms
Object Property Domain
ObjectPropertyDomain(p, C) ∀x∀y (Φp(x, y)→ ΦC(x))
C must be a SuperClass expression.
Object Property Range
ObjectPropertyRange(p, C) ∀x∀y (Φp(y, x)→ ΦC(x))
C must be a SuperClass expression.

Assertions
Class Assertions
ClassAssertion(C, i) C(i) ΦC(i)
Equivalent to the formula ∀x (x = i→ ΦC(x)). C must be a SuperClass expression.

Keys
HasKey
HasKey(C, p1, . . . , pk) ∀x∀y∀z1 . . . ∀zk ((ΦC(x) ∧ ΦC(y) ∧1≤i≤k (Φpi

(x, zi) ∧
Φpi

(y, zi)))→ x = y)
C must be a SubClass expression.

Table 7. OWL 2 axioms that require class expressions

Let us now examine the axioms and assertions that can be written in OWL 2 QL. The
class axioms EquivalentClasses and DisjointClasses are restricted to QL
SubClass expressions, i.e. ER EquivClass expressions. The property axiom
SubObjectPropertyOf is unrestricted in both ER and QL, while
ObjectPropertyDomain and ObjectPropertyRange have their second argu-
ment restricted to a QL SuperClass expression, thus are ER axioms. Assertions allowed
in OWL 2 QL are DifferentIndividuals and ObjectPropertyAssertion
(that can always be translated into dlgp) and ClassAssertion, that is restricted to
a QL SubClass expression, i.e. an ER EquivClass expression. The axioms HasKey
and DisjointUnion do not appear in OWL 2 QL. The axiom SubClassOf is re-
stricted: its first argument must be a QL SubClass expression, while the second must be
a QL SuperClass expression. Thus QL SubClass axioms are ER SubClass axioms.

We conclude that any QL axiom is an ER axiom.

7.3 OWL 2: the RL profile

As ER, OWL 2 RL considers EquivClass, SubClass and SuperClass expressions.
EquivClass expressions are built from the conjunction ObjectIntersectionOf

of atomic class expressions and the existential restriction ObjectHasValue. These
constructors form a subset of those listed in Tab. 3, and thus RL EquivClass expressions
are ER EquivClass expressions. Since OWL 2 RL restricts the axiom
EquivalentClasses to EquivClass expressions that can be translated by conjunc-
tive formulas, these axioms are ER axioms.

SubClass expressions are built from the constructors ObjectIntersectionOf,
ObjectUnionOf, ObjectOneOf, ObjectSomeValuesFrom and
ObjectHasValue. These constructors form a subset of those listed in Tab. 4, and
thus RL SubClass expressions are ER SubClass expressions. Since OWL 2 RL restricts
the axioms DisjointClasses and HasKey to SubClass expressions, these axioms
are ER axioms.

SuperClass expressions in RL are defined inductively. A SuperClass expression is
either an (atomic) class; the intersection (ObjectIntersectionOf) of SuperClass
expressions; the complement of (ObjectComplementOf) of a SubClass expression;
the universal restriction (ObjectAllValuesFrom) of a SuperClass expression; or
the maximum cardinality (ObjectMaxCardinality) of a SubClass expression,
when restricted to 0 or 1. It follows that RL SuperClass expressions are ER SuperClass
expressions.

Since RL put the same restrictions on axioms as ER, it follows that all RL axioms
are ER axioms.

8 Implementation of the translator

When the OWL 2 input belongs to the ER fragment, our tool ensures that it will be
translated into a set of existential rules having the same models. We detail here the
behavior of our tool when the input does not necessarily belong to the ER fragment.

Each axiom (and assertion) that does not require class expressions (see Tab. 6)
is translated into one or two (in the case of EquivalentObjectProperty or
InverseObjectProperty) dlgp rules or constraints. Such axioms always belong
to the ER fragment.

Each axiom (and assertion) that requires class expressions (except Disjoint-
Union, that we never handle, for which a warning is issued) is translated into one or
two (in the case of EquivalentClasses) class inclusions, as described in Tab. 7.
For instance,A ≡ B generates the two class inclusionsA v B andB v A; (∃R.C)(a)
generates the class inclusion {a} v ∃R.C.

Each class inclusion A v B thus generated will then be independently analysed.
The first step is to rewrite that inclusion in the form A v E u R1 u . . . u Rk where
E, if present, is an EquivClass expression and the rests Ri, if present, are neither
EquivClass expressions nor an ObjectIntersectionOf. The initial class inclu-
sion is thus equivalent to the k + 1 class inclusions A v E and, for 1 ≤ i ≤ k,
A v Ri. We try now to rewrite each inclusion A v Ri. This can be done when
Ri is an ObjectComplementOf, ObjectAllValuesFrom, or ObjectMax-
Cardinality (0 or 1), and we can replace the inclusion A v Ri by an inclusion
A′ v R′i as in the proof of Prop. 6. Otherwise that particular class inclusion is not
translated and a warning is issued. The whole process is repeated on the inclusion ob-
tained, until the R(n)

i obtained is an EquivClass expression or a warning is issued.

Example 7. Let us consider the class inclusionA v (BtC)u(∀r.D). Neither (BtC)
nor (∀r.D) are EquivClass expressions, so we generate the two class inclusions A v
B t C and A v ∀r.D. We have no possibility to rewrite the first one, so a warning is
issued. The second is rewritten into ∃r−.A v D. Since D is an EquivClass expression,
that class inclusion is kept and the analysis halts.

After this first step, the only remaining class inclusions are of formA v B whereB
is an EquivClass expression. Their left side are first put into disjunctive normal form to
obtain an equivalent inclusionA1t. . .tAp v B where noAi is an ObjectUnionOf.
For each Ai being an EquivClass expression, we generate a dlgp expression translating
Ai v B, otherwise a warning is issued.

Example 8. Let us consider the class inclusion At¬B v ∀r.(C u¬B)u¬(C tD)u
∃r.(B t C). It does not belong to the ER fragment since its left side is not a SubClass
expression and its right side is not a SuperClass expression. It is equivalently rewritten
into (1)A t ¬B v ∀r.(C u ¬B), (2)A t ¬B v ¬(C t D), and (3)A t ¬B v
∃r.(B t C). (1) is equivalently rewritten into (1.0)∃r−.(A t ¬B) v C u ¬B and (2)
into (2.0) (A t ¬B) u (C tD) v ⊥. Since the right side of (3) is not an EquivClass
expression and we don’t know how to rewrite it, a warning is issued and that inclusion
is not translated. The inclusion (1.0) is equivalently rewritten into (1.0.1)∃r−.(A t
¬B) v C and (1.0.2)∃r−.(A t ¬B) v ¬B. The inclusion (1.0.2) is equivalently
rewritten into (1.0.2.0)Bu∃r−.(At¬B) v ⊥. Our initial inclusion is thus equivalent
to the inclusions (1.0.1), (1.0.2.0), (2.0) and (3). (3) has been rejected and a warning
has been issued, and the right side of the other inclusions are EquivClass expressions.

We now put the left sides of (1.0.1), (1.0.2.0), and (2.0) in disjunctive normal form,
obtaining the inclusions (1.0.1.0)∃r−.At∃r−.(¬B) v C, (1.0.2.0.0) (Bu∃r−.A)t

(B u ∃r−.(¬B)) v ⊥ and (2.0.0) (A uC) t (A uD) t (¬B uC) t (¬B uD) v ⊥.
By “splitting” the disjunctions, we obtain the class inclusions (1.0.1.0.1)∃r−.A v
C, (1.0.1.0.2)∃r−.(¬B) v C, (1.0.2.0.0.1)B u ∃r−.A v ⊥, (1.0.2.0.0.2)B u
∃r−.(¬B) v ⊥, (2.0.0.1)A u C v ⊥, (2.0.0.2)A uD v ⊥, (2.0.0.3)¬B u C v ⊥
and (2.0.0.4)¬BuD v ⊥. The left side of axioms (1.0.1.0.2), (1.0.2.0.0.2), (2.0.0.3)
and (2.0.0.4) are not EquivClass expressions, so they cannot be translated and four
warnings are issued. The other axioms are translated into dlgp.
(1.0.1.0.1) C(X) :- r(Y, X), A(Y)
(1.0.2.0.0.1) ! :- B(X), r(Y, X), A(X)
(2.0.0.1) ! :- A(X), C(X)
(2.0.0.2) ! :- A(X), D(X)

The initial class inclusion (that does not belong to ER) has been translated into nine
class inclusions, from which four could be translated into dlgp. Five warnings have been
issued.

When the input belongs to the OWL 2 ER fragment, no warning can be issued and
the models of the OWL 2 ontology and the models of its dlgp translation are the same.
However, even when a warning is issued, our algorithm ensures that all models of the
OWL 2 ontology are models of the dlgp translation.

9 conclusion

In this report, we presented the OWL 2 ER profile, which allows to translate the “Data-
log+” part of an OWL 2 ontology into dlgp. The associated software and documentation
can be found at https://graphik-team.github.io/graal/owl2dlgp. Fu-
ture improvements will be made available on the same website.

Appendix: Grammar for the ER profile

Class := IRI

Datatype := IRI

ObjectProperty := IRI

DataProperty := IRI

AnnotationProperty := IRI

Individual := NamedIndividual | AnonymousIndividual

NamedIndividual := IRI

AnonymousIndividual := nodeID

Literal := typedLiteral | stringLiteralNoLanguage | stringLiteralWithLanguage
typedLiteral := lexicalForm ’ˆˆ’ Datatype
lexicalForm := quotedString
stringLiteralNoLanguage := quotedString
stringLiteralWithLanguage := quotedString languageTag

ObjectPropertyExpression := ObjectProperty | InverseObjectProperty

InverseObjectProperty := ’ObjectInverseOf’ ’(’ ObjectProperty ’)’

DataPropertyExpression := DataProperty

ZeroOrOne := ’0’ | ’1’

AtomicClassExpression :=
Class |
SimpleObjectSomeValuesFrom | ObjectHasValue | ObjectHasSelf |
SimpleObjectOneof | SimpleObjectMinCardinality |
DataHasValue | SimpleDataMinCardinality

SimpleObjectSomeValuesFrom :=
’ObjectSomeValuesFrom’ ’(’ ObjectPropertyExpression owl:Thing ’)’

ObjectHasValue := ’ObjectHasValue’ ’(’ ObjectPropertyExpression Individual ’)’

ObjectHasSelf := ’ObjectHasSelf’ ’(’ ObjectPropertyExpression ’)’

SimpleObjectOneOf := ’ObjectOneOf’ ’(’ Individual ’)’

SimpleObjectMinCardinality :=
’ObjectMinCardinality’ ’(’ ZeroOrOne ObjectPropertyExpression ’)’

DataHasValue := ’DataHasValue’ ’(’ DataPropertyExpression Literal ’)’

SimpleDataMinCardinality :=
’DataMinCardinality’ ’(’ ZeroOrOne DataPropertyExpression ’)’

EquivClassExpression :=
AtomicClassExpression |
EquivObjectIntersectionOf |
EquivObjectSomeValuesFrom |
EquivObjectMinCardinality |
EquivDataSomeValuesFrom |
EquivDataMinCardinality

EquivObjectIntersectionOf :=
’ObjectIntersectionOf’ ’(’ EquivClassExpression EquivClassExpression

{ EquivClassExpression } ’)’

EquivObjectSomeValuesFrom :=
’ObjectSomeValuesFrom’ ’(’ ObjectPropertyExpression EquivClassExpression ’)’

EquivObjectMinCardinality :=
’ObjectMinCardinality’ ’(’ ZeroOrOne ObjectPropertyExpression EquivClassExpression ’)’

EquivDataSomeValuesFrom :=
’DataSomeValuesFrom’ ’(’ DataPropertyExpression { DataPropertyExpression }

EquivDataRange ’)’

EquivDataMinCardinality :=
’DataMinCardinality’ ’(’ ZeroOrOne DataPropertyExpression EquivDataRange ’)’

EquivDataRange :=
Datatype |
EquivDataIntersectionOf |
EquivDataOneOf

EquivDataIntersectionOf := ’DataIntersectionOf’ ’(’ EquivDataRange EquivDataRange
{ EquivDataRange } ’)’

EquivDataOneOf := ’DataOneOf’ ’(’ Literal ’)’

SubClassExpression :=
AtomicClassExpression |
SubObjectIntersectionOf |
SubObjectSomeValuesFrom |
SubObjectMinCardinality |
SubObjectUnionOf |
SubObjectOneOf
SubDataSomeValuesFrom |
SubDataMinCardinality

SubObjectIntersectionOf :=
’ObjectIntersectionOf’ ’(’ SubClassExpression SubClassExpression

{ SubClassExpression } ’)’

SubObjectSomeValuesFrom :=
’ObjectSomeValuesFrom’ ’(’ ObjectPropertyExpression SubClassExpression ’)’

SubObjectMinCardinality :=
’ObjectMinCardinality’ ’(’ ZeroOrOne ObjectPropertyExpression SubClassExpression ’)’

SubObjectUnionOf :=
’ObjectUnionOf’ ’(’ SubClassExpression SubClassExpression { SubClassExpression } ’)’

SubObjectOneOf := ’ObjectOneOf’ ’(’ Individual { Individual }’)’

SubDataSomeValuesFrom :=
’DataSomeValuesFrom’ ’(’ DataPropertyExpression { DataPropertyExpression }

SubDataRange ’)’

SubDataMinCardinality :=
’DataMinCardinality’ ’(’ ZeroOrOne DataPropertyExpression SubDataRange ’)’

SubDataRange :=
Datatype |
SubDataIntersectionOf |
SubDataUnionOf |
SubDataOneOf

SubDataIntersectionOf := ’DataIntersectionOf’ ’(’ SubDataRange SubDataRange { SubDataRange } ’)’

SubDataUnionOf := ’DataUnionOf’ ’(’ SubDataRange SubDataRange { SubDataRange } ’)’

SubDataOneOf := ’DataOneOf’ ’(’ Literal { Literal } ’)’

SuperClassExpression :=
AtomicClassExpression |
SuperObjectIntersectionOf |
SuperObjectSomeValuesFrom |
SuperObjectAllValuesFrom |
SuperObjectComplementOf |
SuperObjectMinCardinality |
SuperObjectMaxCardinality |
SuperObjectExactCardinality |
SuperDataSomeValuesFrom |
SuperDataAllValuesFrom |
SuperDataMinCardinality |
SuperDataMaxCardinality |
SuperDataExactCardinality

SuperObjectIntersectionOf :=
’ObjectIntersectionOf’ ’(’ SuperClassExpression SuperClassExpression

{ SuperClassExpression } ’)’

SuperObjectSomeValuesFrom :=
’ObjectSomeValuesFrom’ ’(’ ObjectPropertyExpression EquivClassExpression ’)’

SuperObjectAllValuesFrom :=
’ObjectAllValuesFrom’ ’(’ ObjectPropertyExpression SuperClassExpression ’)’

SuperObjectComplementOf := ’ObjectComplementOf’ ’(’ SubClassExpression ’)’

SuperObjectMinCardinality :=
’ObjectMinCardinality’ ’(’ ZeroOrOne ObjectPropertyExpression

EquivClassExpression ’)’

SuperObjectMaxCardinality :=
’ObjectMaxCardinality’ ’(’ ZeroOrOne ObjectPropertyExpression

[SubClassExpression] ’)’

SuperObjectExactCardinality :=
’ObjectExactCardinality’ ’(’ ZeroOrOne ObjectPropertyExpression

[EquivClassExpression] ’)’

SuperDataSomeValuesFrom :=
’DataSomeValuesFrom’ ’(’ DataPropertyExpression { DataPropertyExpression }

EquivDataRange ’)’

SuperDataAllValuesFrom :=
’DataAllValuesFrom’ ’(’ DataPropertyExpression { DataPropertyExpression }

SuperDataRange ’)’

SuperDataMinCardinality :=
’DataMinCardinality’ ’(’ ZeroOrOne DataPropertyExpression EquivDataRange ’)’

SuperDataMaxCardinality :=
’DataMaxCardinality’ ’(’ ZeroOrOne DataPropertyExpression [SubDataRange] ’)’

SuperDataExactCardinality :=
’DataExactCardinality’ ’(’ ZeroOrOne DataPropertyExpression [EquivDataRange] ’)’

SuperDataRange :=
Datatype |
SuperDataIntersectionOf |
SuperDataComplementOf |

SuperDataIntersectionOf :=
’DataIntersectionOf’ ’(’ SuperDataRange SuperDataRange { SuperDataRange } ’)’

SuperDataComplementOf := ’DataComplementOf’ ’(’ SubDataRange ’)’

Axiom :=
Declaration |
ClassAxiom |
ObjectPropertyAxiom |
DataPropertyAxiom |
DatatypeDefinition |
HasKey |
Assertion |
AnnotationAxiom

ClassAxiom := SubClassOf | EquivalentClasses | DisjointClasses

SubClassOf :=
’SubClassOf’ ’(’ axiomAnnotations SubClassExpression SuperClassExpression ’)’

EquivalentClasses :=
’EquivalentClasses’ ’(’ axiomAnnotations EquivClassExpression

EquivClassExpression { EquivClassExpression } ’)’

DisjointClasses :=
’DisjointClasses’ ’(’ axiomAnnotations SubClassExpression SubClassExpression

{ SubClassExpression } ’)’

ObjectPropertyAxiom :=
SubObjectPropertyOf | EquivalentObjectProperties |
DisjointObjectProperties | InverseObjectProperties |
ObjectPropertyDomain | ObjectPropertyRange |
FunctionalObjectProperty | InverseFunctionalObjectProperty |
ReflexiveObjectProperty | IrreflexiveObjectProperty |
SymmetricObjectProperty | AsymmetricObjectProperty |
TransitiveObjectProperty

SubObjectPropertyOf :=
’SubObjectPropertyOf’ ’(’ AxiomAnnotations subObjectPropertyExpression

superObjectPropertyExpression ’)’

subObjectPropertyExpression := ObjectPropertyExpression | propertyExpressionChain

propertyExpressionChain :=
’ObjectPropertyChain’ ’(’ ObjectPropertyExpression ObjectPropertyExpression

{ ObjectPropertyExpression } ’)’

superObjectPropertyExpression := ObjectPropertyExpression

EquivalentObjectProperties :=
’EquivalentObjectProperties’ ’(’ axiomAnnotations ObjectPropertyExpression

ObjectPropertyExpression { ObjectPropertyExpression } ’)’

DisjointObjectProperties :=
’DisjointObjectProperties’ ’(’ axiomAnnotations ObjectPropertyExpression

ObjectPropertyExpression { ObjectPropertyExpression } ’)’

ObjectPropertyDomain :=
’ObjectPropertyDomain’ ’(’ axiomAnnotations ObjectPropertyExpression

SuperClassExpression ’)’

ObjectPropertyRange :=
’ObjectPropertyRange’ ’(’ axiomAnnotations ObjectPropertyExpression

SuperClassExpression ’)’

InverseObjectProperties :=
’InverseObjectProperties’ ’(’ axiomAnnotations ObjectPropertyExpression

ObjectPropertyExpression ’)’

FunctionalObjectProperty :=
’FunctionalObjectProperty’ ’(’ axiomAnnotations ObjectPropertyExpression ’)’

InverseFunctionalObjectProperty :=
’InverseFunctionalObjectProperty’ ’(’ axiomAnnotations ObjectPropertyExpression ’)’

ReflexiveObjectProperty :=
’ReflexiveObjectProperty’ ’(’ axiomAnnotations ObjectPropertyExpression ’)’

IrreflexiveObjectProperty :=
’IrreflexiveObjectProperty’ ’(’ axiomAnnotations ObjectPropertyExpression ’)’

SymmetricObjectProperty :=
’SymmetricObjectProperty’ ’(’ axiomAnnotations ObjectPropertyExpression ’)’

AsymmetricObjectProperty :=
’AsymmetricObjectProperty’ ’(’ axiomAnnotations ObjectPropertyExpression ’)’

TransitiveObjectProperty :=
’TransitiveObjectProperty’ ’(’ axiomAnnotations ObjectPropertyExpression ’)’

DataPropertyAxiom :=
SubDataPropertyOf | EquivalentDataProperties | DisjointDataProperties |
DataPropertyDomain | DataPropertyRange | FunctionalDataProperty

SubDataPropertyOf :=
’SubDataPropertyOf’ ’(’ axiomAnnotations subDataPropertyExpression

superDataPropertyExpression ’)’
subDataPropertyExpression := DataPropertyExpression
superDataPropertyExpression := DataPropertyExpression

EquivalentDataProperties :=
’EquivalentDataProperties’ ’(’ axiomAnnotations DataPropertyExpression DataPropertyExpression

{ DataPropertyExpression } ’)’

DisjointDataProperties :=
’DisjointDataProperties’ ’(’ axiomAnnotations DataPropertyExpression DataPropertyExpression

{ DataPropertyExpression } ’)’

DataPropertyDomain :=
’DataPropertyDomain’ ’(’ axiomAnnotations DataPropertyExpression SuperClassExpression ’)’

DataPropertyRange :=
’DataPropertyRange’ ’(’ axiomAnnotations DataPropertyExpression SuperDataRange ’)’

FunctionalDataProperty := ’FunctionalDataProperty’ ’(’ axiomAnnotations DataPropertyExpression ’)’

DatatypeDefinition := ’DatatypeDefinition’ ’(’ axiomAnnotations Datatype EquivDataRange ’)’

HasKey :=
’HasKey’ ’(’ axiomAnnotations SubClassExpression ’(’ { ObjectPropertyExpression } ’)’

’(’ { DataPropertyExpression } ’)’ ’)’

Assertion :=
SameIndividual | DifferentIndividuals | ClassAssertion |
ObjectPropertyAssertion | NegativeObjectPropertyAssertion |
DataPropertyAssertion | NegativeDataPropertyAssertion

sourceIndividual := Individual
targetIndividual := Individual
targetValue := Literal

SameIndividual :=
’SameIndividual’ ’(’ axiomAnnotations Individual Individual { Individual } ’)’

DifferentIndividuals :=
’DifferentIndividuals’ ’(’ axiomAnnotations Individual Individual { Individual } ’)’

ClassAssertion :=
’ClassAssertion’ ’(’ axiomAnnotations SuperClassExpression Individual ’)’

ObjectPropertyAssertion :=
’ObjectPropertyAssertion’ ’(’ axiomAnnotations ObjectPropertyExpression

sourceIndividual targetIndividual ’)’

NegativeObjectPropertyAssertion :=
’NegativeObjectPropertyAssertion’ ’(’ axiomAnnotations ObjectPropertyExpression

sourceIndividual targetIndividual ’)’

DataPropertyAssertion :=
’DataPropertyAssertion’ ’(’ axiomAnnotations DataPropertyExpression

sourceIndividual targetValue ’)’

NegativeDataPropertyAssertion :=
’NegativeDataPropertyAssertion’ ’(’ axiomAnnotations DataPropertyExpression

sourceIndividual targetValue ’)’

